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It is interesting to reverse engineer the considerations that led Fermat to ask whether all Fermat 

numbers are prime, which Euler disproved. These are related to cyclotomic equations.  
 

In fact, a result proved in [1], there are generalisations for any real numbers, not just for the 

numbers 2, or just for subtraction or addition by 1, of the relation we give below between 

generalised Mersenne numbers Mn = (2(2n) – 1) and Fermat numbers Fn = (2(2n) + 1).  
 

The first four values for Fermat numbers are F0 = 3, F1 = 5, F2 = 17 and F3 = 257, and we have 

 M3 = F3 – 2 = 255 

       = 17 x 5 x 3 

      = F2 x F1 x F0. 
 

This is a special case of 

 Mn = Π(r = 0, n – 1) Fr, 

which as a first stage can be put as 

(2(2n) – 1) = (2(2n – 1) – 1)(2(2n – 1) + 1), 

and which can be written inductively as 

(2(2n) – 1) = (2 – 1)(2(2n – 1) + 1)(2(2n – 2) + 1) … (2(20) + 1).  � 

 

These ideas led us to investigate the following two simple prime number theorems based on real 

cyclotomics – equations of type (1) below, which are not usually stated in this generality, e.g. not in 

the excellent [2] or [3], and are amongst the 70 results described in [1]. 

 

Theorem. Suppose a, b and n are positive whole numbers. Then 

 a
n
 – b

n
  

is not prime except for the possibilities n = 1, or b = (a – 1) and n prime. 
 

Proof.  

(1) a
n
 – b

n
  = (a – b){Σ(r = 0, n – 1) a

n – r – 1
b

r}, 
 

so if a
n
 – b

n
 is prime, either the first factor (a – b) = 1, or the second factor equals 1. But if the 

second factor equals 1, then n = 1, so consider the case (a – b) = 1. 
 

Assume n is not prime, so n = km, say. We prove a contradiction. It is generally true that 

  a
km

 – b
km

  = (a
k
)
m

 – (b
k
)
m

 = (a
k
 – b

k
){Σ(r = 0, m – 1) a

k(m – r – 1)
b

kr}. 
 

Now we cannot have m = 1, because n factorises, so the assumption leads to 

 a
k
 – b

k
 = 1. 

 

But if a > b ≥ 1, then 

 1
k
 = (a – b)

k
 < a

k – 1
(a – b) < a

k
 – b

k
. 

This is the required contradiction, that a
k
 – b

k
 ≠ 1, so n is prime.  � 

 

Examples. If n = 3, a = 10 and b = 9, then (a – b) = 1 and in this particular instance 

 10
3
 – 9

3
 = 271 

is prime, so this is a possibility. On the other hand 

 7
5
 – 6

5
 = 9031 = 11 x 821,  



so not all such numbers with n prime and (a – b) = 1 are prime. We have indicated that for n = 4, 

which is not prime, and for a = 10, b = 9, so (a – b) = 1, that a
n
 – b

n
 will factorise, and we verify 

 10
4
 – 9

4
 = 3439 = 19 x 181 

is composite. We also know that the case n = 3, a = 10 and b = 7 will factorise, since (a – b) ≠ 1, and 

 10
3
 – 7

3
 = 657 = 3 x 3 x 73. 

 

Theorem. Let a, b and n be positive whole numbers, as before. No numbers of the form 

 a
n
 + b

n
  

are prime except for the possibilities a = b = 1 or n = 1, or n a power of 2, so all the latter such 

numbers can be represented as sums of squares. 

 

Proof. We assume to begin with that n is an odd whole number – we will prove a contradiction. 

We can easily see, if in formula (1) we put (-b) instead of (b), provided n is odd 

(2) a
n
 + b

n
  = (a + b){Σ(r = 0, n – 1)a

n – r – 1
(-b)

r}. 
 

Now if a
n
 + b

n
 is prime, either (a + b) = 1, which is impossible, or the expression in curly 

brackets is 1. So 

  a
n
 + b

n
  = (a + b), 

which is clearly the case only for a = b = 1 or n = 1.  
 

So in all other circumstances, n is not odd. But if n is even and not a power of 2, there exists an 

odd factor m ≠ 1 so that n = jm, and 

 a
n
 + b

n
  = (a

j
)
m

 + (b
j
)
m  

is prime, which we have proved is not the case.  
 

So a = b = 1 or n = 1, or n is a power of 2, call it 2z, so all the latter such primes can be written as 

 (a
z
)
2
 + (b

z
)
2
.  � 

 

Examples. If we put a = 10, b = 3 and choose an odd n = 5, we get the factorisation 

10
5
 + 3

5
 = 100,243 = 13 x 7711.   

For n a power of 2, say n = 2 or 4, we find there are some sums of nth powers that are primes, e.g. 

4
2
 + 1 = 2

4
 + 1 = 17, 

and others that are not, e.g.  

6
4
 + 5

4
 = 1921 = 17 x 113. 

But for n = 6 (not a power of 2), the result must factorise, and indeed 

4
6
 + 3

6
 = 4825 = 5 x 5 x 193. 

 

We are now in a position to see how relevant our discussion of Fermat numbers Fn = (2(2n) + 1) 

was. If we choose a = 2 and b = 1, then the Fn are the only sums of powers of this type which can be 

prime. 
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