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This work may be translated or copied in whole or in part without the permission of the 

authors, Jim H. Adams and Will Cottrell, provided that they are given as the source of the 

text, which is asserted by them unless indicated otherwise. Use is allowed in connection 

with any information storage and retrieval system, electronic adaption, computer 

software, or by any methodology now known or hereafter developed. 

 

Enhancing power output using reflectors for solar panels on flat roofs is to be found as 

item 3 in the Engineering section of www.jimhadams.com. 

 

The technical part of the report should be accessible to those with a science A level. Its 

contents are designed for those who wish to educate themselves about the theory and 

practice of solar panels. Its recommendations may be of interest to decision makers who 

wish to increase the efficiency of their photovoltaic (PV) installations.  
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1. Executive summary. 
 

1.1. Scope and specification. 

The present work arose from a specification by Will Cottrell of Brighton Energy Co-op who 

wanted to install reflectors for fixed photovoltaic (PV) arrays on flat roofs. The questions 

he asked were 

(A) Is it necessary to cover all of a PV panel with additional radiation from a reflector in 

order for the output of the panel to be boosted by the increased illumination? 

(B) What is the optimum panel reflector setup on a flat roof ? 

(C) Is there a design that can illuminate a panel from below using a reflector, and will this 

work? 

(D) What is the additional output you expect? 

 

1.2. Summary. 

On average about half of the light from the sun which reaches the ground reaches it 

directly and the other half comes from blue sky or clouds. We find that for a solar panel 

nearly facing south, a slope angle of 30 degrees boosts output by 10%. When the panel 

is not near to south facing, a steeper slope, say 35 degrees, is better.  

 

1.3. Recommendations. 
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2. Technical report. 
 

2.1. Introduction. 

A previous work by Jim H. Adams and coworkers “The optimal arrangement of reflectors 

in solar panel tracker arrays” originated from discussions with Graham Ennis who was in 

the process of designing PV panels with reflectors. The present report arose from a 

specification by Will Cottrell of Brighton Energy Co-op, who had looked at that work and 

the reports of others using reflectors, and wanted to install reflectors for PV arrays on flat 

roofs. 

The purpose of including calculations is twofold 

(i)  That computational errors may be detected and challenged. 

(ii) That computations using other assumptions may be more easily developed. 

 

2.1.1. The array and reflector design. 

The central new idea in this paper is for a single reflector spanning a spaced array of PV 

panels, so that rays of light from the sun at different times of day always hit an array from 

a segment of the reflector that is not necessarily at right angles to a PV panel. This has 

various consequences. 

(1) There is no interruption to the sunlight on a panel arising from discrete segments of 

the reflector, which may have negative implications on the output of the panel. 

(2) The absence of reflectors at right angles to the sun’s rays at sunrise and sunset 

means that there is no shadow due to the reflectors under a wide interval of the time of 

day. 

(3) The only exception to a one reflector, one line of PV array, would be for the back array 

which could have an additional reflector at a different angle, since these PV arrays are 

sloped. 

 

2.1.2. Technical summary. 

On average about half of the light from the sun which reaches the ground reaches it 

directly and the other half comes from blue sky or clouds. Using this, we look at what the 

angle of a south facing solar panel should be. We find output is boosted by 10% for a 

panel at a 28° slope from the ground compared with a flat panel, for a panel at 35° the 

output is boosted by 9%, but at 44° by 1%. All these computations are for midday. 

Outside of midday, and for non south facing panels, the best slope is steeper than 28°. 

 

1.1.3. Technical recommendations. 
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2.2. Solar radiation. 

Solar radiation refers to the electromagnetic radiation that reaches the Earth from the 

sun. Standard irradiation on a PV panel arises from three sources 

(1) Directly from the sun. 

(2) Indirectly, from radiation scattered in the atmosphere. 

(3) Indirectly, through the medium of clouds. 

We will consider the energy and frequency characteristics of illumination arising from 

these three sources. 

The amount of solar radiation on average is as follows [SR1]  

Illuminescence type Percentage 

Reflected back into space 35.0 

Absorbed by atmosphere 17.5 

Scattered to Earth from blue sky 10.5 

Scattered to Earth from clouds 14.5 

Radiation going directly to Earth’s surface 22.5 

 

The outer atmosphere of Earth receives approximately 1367 W/m² of solar radiation 

[World Meteorological Organisation], [SR2]. The radiation varies by around ±2% due to 

fluctuations in emissions from the sun itself as well as by ±3.5% due to seasonal 

variations in distance and solar altitude. 

By Wien’s displacement law, the greater the temperature of a star, the shorter will be the 

wavelength of its radiant emissions. Solar radiation is spread over a wide frequency 

range. The sun’s rays contain electromagnetic wavelengths as short as 0.2 mm 

(ultraviolet) with maximum energy centred at around 0.4 mm (visible blue light). 

[SPV]. Whilst a cloudy sky can increase the amount of diffuse solar radiation, a heavy 

rain cloud can reduce the direct component to almost zero. As there is generally an 

increase in cloud activity during the colder or wetter months, these factors combine to 

produce a significant seasonal variation in available solar radiation. 

Figure 1 shows that the majority of solar radiation occurs in the short-wave visible and 

ultraviolet portions of the electromagnetic spectrum. There is a long-wave component of 

infrared. However, large bands of this are absorbed by gasses and particles within the 

upper atmosphere. [SR2]. 
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Figure 1 - Spectral content of incident solar radiation.  

Ultraviolet (UV) radiation makes up a very small part of the total energy content of solar 

radiation, roughly 8% – 9%. The visible range, with a wavelength of 0.35 mm to 0.78 mm, 

represents only 46% – 47% of the total energy received from the sun. The final 45% of 

the sun’s total energy is in the near-infrared range of 0.78 mm to 5 mm. In addition to 

the spectrum of solar radiation there is a spectrum of terrestrial radiation that fills out 

the far-infrared range spanning from 3 to 75 mm. These are basically the heat radiating 

from the surfaces of materials that have been warmed by the sun. 

 
Figure 2 - The effects of scattering on different wavelengths of light. Blue light arrives from all 

directions after scattering, whilst red and yellow light arrives almost directly from the sun.  

You will notice significant differences between the spectral content of the radiation 

reaching the outer atmosphere and that actually reaching us on the surface. This is due 

to the absorption of some of the radiation when a gas molecule or particle retains some 

of this energy as heat. There are noticeable dips in the solar spectrum that coincide with 

the absorption characteristics of different gasses. Whilst some of this absorbed heat 

finds its way to the surface as long-wave radiation, the vast majority is simply re-radiated 

back out into space. 
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2.3. The response of a PV panel to illumination. 

2.3.1. How PV panels work. [Lo1]. [Lo2] 

The photoelectric effect, discovered by Edmond Becquerel in 1839, is the mechanism 

used in PV panels. Direct current electricity (DC) is generated. Some advantages are: zero 

fuel costs and the free availability of solar fuel, there are no moving parts so there is no 

noise, reduction in maintenance, the modular design which can also be integrated into 

buildings and that there are zero emissions. Some disadvantages are: decreasing but 

high capital costs, at present 20% – 35% efficiency, the use of toxic materials in some 

manufacturing processes, the need for a power electronic inverter from DC to AC 

(alternating current) for grid-connected applications, intermittent and variable power and 

that cloud cover is difficult to predict.  

There are three main types of PV panels currently available: 

         monocrystalline         polycrystalline      thin film 
 

        

 

 

 

 

 

 

 

 

 

 

 

PV cells under an electric field produce electricity when light particles called photons 

illuminate a pn junction, to be described. pn junctions are common in semiconductors. 

 

Elements consist of atoms, with a central nucleus containing uncharged neutrons and 

positively charged protons. Negatively charged electrons lie outside, and in an electrically 

neutral atom are equal in number to its protons. Here is a relative scale model.  

 

On this scale, the nearest star would be a little over 16,000 Km away. [HP] 
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Numbers come in two forms: discrete, whole or natural numbers, such as 1, 2, 3 … and 

continuous numbers called real numbers, which can include these or lie in any 

intermediate state between them. Natural numbers may be constrained to loop back to 

themselves, so they form a finite set of states, such as 0, 1, … (n – 1) with n = 0. 

For quantum theory some finite numbers, where these can be called quantum numbers, 

define physical states. For instance these can be finite values representing the angular 

momentum of a particle. We also have continuous numbers describing physical states, 

so that whereas the velocity of a photon of light is ±c, particles with rest mass can have 

any velocities between but not including ±c. 

Conventionally, each electron in an atom is described by an orbital energy state with four 

different quantum numbers. The first three (n, l, ml) specify the particular orbital of 

interest, and the fourth (ms) specifies how many electrons can occupy that orbital. 

1. Principal quantum number (n):  n = 1, 2, 3, …, ∞ 
 

Specifies the energy of an electron and the size of the orbital (the distance from 

the nucleus of the peak in a radial probability distribution). All orbitals that have 

the same value of n are said to be in the same shell (level). For a hydrogen atom 

with n = 1, the electron is in its ground state; if the electron is in the n = 2 orbital, 

it is in an excited state. The total number of orbitals for a given n value is n2. 

2. Angular momentum (secondary, azimuthal) quantum number (l):  l = 0, ..., n–1. 
 

Specifies the shape of an orbital with a particular principal quantum number. The 

secondary quantum number divides the shells into smaller groups of orbitals 

called subshells (sublevels). Usually, a letter code is used to identify l to avoid 

confusion with n: 

l  0 1 2 3 4 5 ... 

Letter  s p d f g h ... 

The subshell with n = 2 and l = 1 is the 2p subshell; if n = 3 and l = 0, it is the 3s 

subshell, and so on. The value of l also has a slight effect on the energy of the 

subshell; the energy of the subshell increases with l (s < p < d < f). 

3. Magnetic quantum number (ml):  ml = -l, ..., 0, ..., +l. 
 

Specifies the orientation in space of an orbital of a given energy (n) and shape (l). 

This number divides the subshell into individual orbitals which hold the electrons; 

there are 2l+1 orbitals in each subshell. Thus the s subshell has only one orbital, 

the p subshell has three orbitals, and so on. 

4. Spin quantum number (ms):  ms = +½ or -½. 
 

Specifies the orientation of the spin axis of an electron. An electron can spin in 

only one of two directions (sometimes called up and down). 

 

The Pauli exclusion principle states that no two electrons in the same atom can have 

identical values for all four of their quantum numbers. What this means is that no more 

than two electrons can occupy the same orbital, and that two electrons in the same 

orbital must have opposite spins.  
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TABLE OF ALLOWED QUANTUM NUMBERS  

n l ml 

Number of 

  orbitals 

Orbital 

name 

Number of 

 electrons 

1 0 0        1   1s       2 

2 0 0        1   2s       2 

 
1 -1, 0, +1        3   2p       6 

3 0 0        1   3s       2 

 
1 -1, 0, +1        3   3p       6 

 
2 -2, -1, 0, +1, +2        5   3d     10 

4 0 0        1   4s       2 

 
1 -1, 0, +1        3   4p       6 

 
2 -2, -1, 0, +1, +2        5   4d     10 

 
3 -3, -2, -1, 0, +1, +2, +3        7   4f     14 

   

This scheme, or otherwise 2  a prime number of electrons, generates elements in the 

left-step periodic table shown below. This table is in the same order as the atomic 

number, which is the number of protons in the nucleus, of these elements. 

 

The element silicon, denoted by Si, with atomic number 14 in the above table, is often 

used in semiconductors. After oxygen, silicon is the most abundant element in the 

Earth’s crust.  
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Si has 2 electrons in orbital 1s, 2 electrons in orbital 2s and 6 electrons in orbital 2p, 

leaving 4 outer electrons called valence electrons.  

Atoms can combine together to form molecules and crystalline structures.  

 
A silicon crystal, a unit cube of which is shown above, forms a diamond lattice. Each Si 

atom has four electrons which it can share in covalent bonds with its neighbours. All 

valence electrons are tightly held in covalent bonds. A covalent bond, also called a 

molecular bond, is a chemical bond that involves the sharing of electron pairs between 

atoms. These electron pairs are known as shared pairs or bonding pairs, and the stable 

balance of attractive and repulsive forces between atoms, when they share electrons, is 

known as covalent bonding. For many molecules, the sharing of electrons allows each 

atom to attain the equivalent of a full outer shell, corresponding to a stable electronic 

configuration in a lower energy state than it otherwise would be. 

 
 

Valence electrons largely dictate the electrical properties of a material. 

A useful way to see the difference between conductors, insulators and semiconductors is 

to plot the available energies for electrons in the materials. Instead of having discrete 

energies as in the case of free atoms, the available energy states form bands. Crucial to 

the conduction process is whether or not there are electrons in the conduction band. In 

insulators the electrons in the valence band are separated by a large gap from the 

conduction band, in conductors like metals the valence band overlaps the conduction 

band, and in semiconductors like silicon there is a small enough gap between the 

valence and conduction bands so that thermal or other excitations can bridge the gap.  
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Add enough energy to an electron in the valence band of a semiconductor and it “jumps” 

to the conduction band. A free electron is an electron in the conduction band. In a PV 

panel a photon excites an electron out of the valence band into the conduction band. 

Free electrons can flow through the circuit, or in a process known as recombination drop 

back into the valence band. A built-in electrostatic field pushes the electron through the 

circuit. 

An electron-volt, a unit of energy denoted by eV, is experimentally 1.6 x 10-19 Joules. It is 

the amount of energy gained (or lost) by the charge of a single electron moving across an 

electric potential difference of one volt.  

By quantum theory, the energy of an electron must fall within well-defined bands. The 

energy required to jump to the conduction band is known as the energy gap. The energy 

gap is fundamental to the operation of PV panels, varying with the type of semiconductor 

Crystalline Si: 1.1 eV 

Amorphous Si: about 1.75 eV. 

Hole: silicon with a missing electron (net positive charge) 

Hole may attract an electron from a neighbour 

Process may repeat and hence the hole propagates  
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2.3.2. PV frequency response. 

2.3.3. Inverters and controllers. 

2.3.4. Edge of cloud effect. 

[EC]. What is the “edge-of-cloud effect” and how can it cause solar array issues? 

Clouds are classified by height: high clouds at 5 – 12 km, such as cirrus, cirrostratus and 

cirrocumulus, mid clouds at 2 – 7 km, of type altostratus, altocumulus and nimbostratus 

and low clouds at up to 2 km, such as cumulus, stratus and cumulonimbus. 

“As the cloud begins to cover the sun or when the sun is emerging from behind a cloud, 

there is a sudden burst of energy that produces more power than normal. This is caused 

by light refraction. Refraction can concentrate the sunlight while the edge of the shadow 

passes by. The result is a boost in module voltage output. On a day with bright blue skies 

and fair weather cumulus clouds, the effect is quite noticeable. 

So how can you account for this increase in output? Common practice is to add 20% to 

25% to the amperage rating of the solar controller. But many controllers today are the 
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MPPT type. They track the arrays Maximum Power Point on its IV curve. As the edge of 

clouds start causing over-irradiance. The MPP voltage starts to rise, so too, does the 

current. The MPPT controller then adjusts the voltage up to correct for this effect. 

Take for example a Sunny Boy 5000 Watt grid-tie inverter. The lower the voltage of the 

array the better the efficiency. Of course the design of an array depends on the solar 

panels but you should never design around the highest voltage under standard 

conditions. In this case 480 VDC. Me, I would design around 350VDC to 400VDC under 

normal operating conditions. This would allow for the MPP to move around where it 

wants to”. 
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2.4. The optimal panel slope. 
 

2.4.1. The optimal slope of a panel, by latitude. 

The amount of daily incident solar radiation varies with the time of year and the latitude 

of the location, where the latitude is measured by the number of degrees north of the 

Earth’s equator. In general, we will denote this angle by θ, where for example Brighton & 

Hove is at latitude θ = 50.8° N. 

We wish to calculate from first principles a good approximation to the slope of a PV array 

so that the incident solar radiation is at a maximum for a particular latitude averaged 

over a year. 

For our calculation we wish to estimate how far from a true value the calculated values at 

most will be if we adopt a Copernican model of circular motion of the Earth round the sun 

with uniform velocity and the sun at the centre of this circle. 

The distance of the Earth from the sun is very close to 1 astronomical unit, called an AU, 

which is defined as 149,597,870.7 Km. The nearest approach, called perihelion, is 

0.983 AU, and the furthest distance, called aphelion, is 1.017 AU. Their sum, 2 AU, is the 

longest ‘diameter’ of the ellipse. Since an ellipse is a squashed circle, we can measure 

the amount it deviates from a circle by the eccentricity, e, of the ellipse, which for the 

Earth is 0.0167, so this is very nearly a circle. The focus of the ellipse, which is very near 

to the centre of the sun, is at a distance given by (perihelion + aphelion)  e = 0.0334 AU 

from the midpoint of this ‘diameter’. The speed of the Earth at perihelion is 30,300 m/s 

and at aphelion 29,300 m/s. So we see that if we adopt the simplistic Copernican 

model, we will get results close to the truth, and we can quantify this. 

The rotation axis of the Earth is tilted at an angle, called the obliquity, to the vertical of 

the Earth’s orbital plane around the sun. The obliquity is 23° 26′, where 26′ is 26 

minutes or 60ths of a degree, but in decimal notation we can represent this number of 

degrees as 23.4°. 

             Brighton & Hove 

        North pole       winter 

 

          Equator 

         Brighton & Hove 

     summer 

 

       50.8°        Earth’s tilt or obliquity = 23.4° 

          

 

 

 

We will compute the angle of the sun’s rays at the summer and winter solstices, on 21st 

June and 21st December respectively. At the longest day in summer, the summer 

solstice, we define this angle in terms of the obliquity and latitude of the array, the 

latitude chosen being that at Brighton & Hove, θ = 50.8°. 
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sun’s rays           A 

tangent plane at Earth’s surface     E 

     

sun’s rays     D      23.4° 

 

        39.2°     Equator 

 

           B 

        39.2° 

        C           50.8° 

 

The Earth’s orbital plane is called the ecliptic. In the diagram above the sun’s rays meet 

the vertical to the plane of the ecliptic at right angles. B is at the centre of the Earth, and 

in this planar representation the line running through CB is in the plane defined by the 

equator. Brighton & Hove is represented at D, and the tangent plane at D (the flat roof !) 

is the line ED continued to C. 

The obliquity, angle ABE, is 23.4°. The latitude of D is angle DBC = θ = 50.8°. 

Since the angles in a triangle sum to 180° 

 angle BCD + angle DBC + 90° = 180°, 

which gives 

 angle BCD =  90° – θ = 39.2°. 

Angle EBC is a right angle, so 

 angle EBD + angle DBC = 90°, 

or 

 angle EBD = 90° – θ = 39.2°. 

Thus 

 angle DBA = 39.2° + 23.4° = 113.4° – θ = 62.6°. 

We now look at more detail around the vicinity of D, Brighton & Hove. We want to find 

angle GDH, which is the best slope of the PV array with the horizontal under the summer 

solstice assumptions we have made, assuming these are the most relevant. Please 

excuse the unrepresentative angles in the diagram! 
 

          G      panel at right angles to sun’s rays 

     H 

sun’s rays         D      F 

 

 

 

               62.6° 

         B 
 

Since DBF is a right angled triangle 

 angle FBD = 90° – angle FDB, 

and since 

 angle HDB = 90°, 

angle HDF = angle HDB – angle FDB 
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angle HDF = 90° – 90° + angle FBD = angle FBD 

and 

 angle GDF = 90° = angle GDH + angle HDF, 

we obtain 

 angle GDH = 90° – angle HDF = 90° – 62.6° = θ – 23.4° = 27.4°, 

which is the optimum angle for the panel using this calculation for the sun’s rays to be at 

right angles to the panel at midday of the summer solstice. 

We will now look at the situation at the winter solstice, the shortest day of the year. 

           E   

                        A        F        sun’s rays 

          D               

 

           C 

 

           23.4° 

               15.8° 

       B     50.8°          

 

 

D is the location of Brighton & Hove and CD is a line tangent to the Earth’s surface at D. 

B again depicts the Earth’s centre, and BC represents a line going through the equatorial 

plane. BE at right angles to BC is the Earth’s rotation axis, whereas BA is at right angles 

to the sun’s rays. 

We are interested in the triangle FAD, where we will find that angle FAD is the angle at 

which the sun’s rays hit the horizontal, and because the PV panel is assumed to be at 

right angles to the sun’s rays for maximum output, this will give the slope of the PV array 

with the horizontal. 

Angle EBA is the Earth’s obliquity, 23.4°. Angle DBC is the magnitude of the latitude of D, 

θ = 50.8°. Since 

 angle EBA + angle ABD + angle FBC = angle EBC = θ = 90°, 

we have 

 23.4° + angle ABD + θ = 90°, 

or 

 angle ABD = 66.6° – θ = 15.8°. 

Now 

 angle AFD = angle AFB, 

and triangle FAD contains a right angle, so 

 angle FAB + angle AFD + angle FBA = 180°, 

giving 

 90° + angle AFD + 66.6° – θ = 180° 

 angle AFD = 90° – 66.6° + θ, 

and since angle ADF is a right angle 

 angle FAD + 90° + (90° – 66.6° + θ) = 180°, 

which means 

 angle FAD = 66.6° – θ = 15.8°. 
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Thus at the winter solstice, if the panel is at an angle to maximise its output, the slope of 

the panel, angle JAD in the diagram below, satisfies in the right angled triangle JAD 

 

    sun’s rays 

             J 

 

 

 

   A            D 

   15.8°  slope of panel 

 

 90° + (66.6° – θ) + angle JDA = 180°, 

 angle JDA = 23.4° + θ = 74.2°. 

We now have the angle for maximum power output due to the sun’s rays at the summer 

and winter solstices, and under the same assumptions, we wish to calculate the 

maximum power output over the whole year. 

We have already mentioned that the effect of cloud is present more in winter than in 

summer. This will affect the calculation. Also, of course, winter days are shorter than 

summer ones. Rather than do an explicit calculation to factor in these effects directly, we 

will take data from Figure 3. 
 

 

Figure 3. [MCS]. The chart above illustrates the seasonal variation in the energy production of 

solar panels. I believe that this is based on typical data on how solar panel systems are expected 

to perform.  



19 
 

 

From the diagram, we will make the gross approximation that solar energy production is 

at a maximum of 100 Kwh/month at the summer solstice, and decreases uniformly as a 

straight line to 20 Kwh/month at the winter solstice. 

 

          C 

Kwh/month 

            B                D 

 

 

       A               E 

              G      F       

       0 

     month 
 

At which value is the area under AB equal to the area under BC? This should give an 

approximation to the average month for which the slope of the panel should be 

maximised. To do this we see that the area of triangle ACF is proportional to (AC)2, and 

the area of triangle ABG, which has the same angles as triangle ACF, is proportional to 

(AB)2. We have 

 ½(area ACF + rectangle below it) = (area ABG + rectangle below it). 

The month after the winter solstice, m, for which this occurs then satisfies 

 ½(½  6  80 + 6  20) = (½  m  m  80/6) + m  20, 

giving 

 m2 + 3m – 27 = 0 

or by the standard solution of a quadratic equation, and since this solution is positive 

 m = ½[-3 + √(9 + 4  27)] = 3.91 months. 

Thus m corresponds to 18th April. 

The ratio of m to 6 months is now r = 0.652. We will use this as the factor by which we 

incline the new slope angle, which is at βw = 23.4° + θ = 74.2° calculated for 

maximisation at the winter solstice and βs = θ – 23.4° = 27.4° calculated for the 

summer solstice. So we will assume for average maximisation, using the equation of a 

straight line, it should be at 

 βw + 0.652(βs – βw) = [74.2 – (0.652  46.8)]° = 43.7°. 

Doly García points out that this assumption might be flaky. We will see later under 

additional scenarios that whatever reasonable angle we choose gives a not too distant 

result, so I ignore this. 

We have not yet finished. The above calculation only concerns the angle suitable for 

direct solar radiation. It does not include the effects of scattering of light and light from 

clouds. We must include these factors in our calculation. 

We saw in section 2.2 that these two effects correspond on average to 25% of the 

radiation from the sun reaching Earth’s surface, whereas the effect of direct sunlight was 

22.5%. Thus the first effect is 1.1 times that of the second. We will assume that light 

from indirect sources is on average the same from all points of the sky. For indirect 

radiation, the optimal panel configuration is horizontal, if we assume that a panel at an 

angle has its source of radiation restricted by the flat surface, so that it does not come 

from all angles. Thus at an angle of 43.7° a sector of 43.7/180 = 0.24 of the ambient 

indirect radiation is blocked out, leaving 76% remaining.  
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However, we also need to take into account that we are assuming the power output 

varies as the sine of the incident radiation to the plane of the PV panel. If this angle is γ 

the normalised power component varies from sin(γ1) = sin(43.7°) through sin(90°) = 1 

to sin(180°) = 0, and the total summation is the integral 

       d 
 

  
          

             , 

where 

 cos(43.7°) = 0.723, 

and we are assuming this integral is invariant over the day. For a horizontal panel the 

same factor is 2. Thus the power is reduced to (1001.723)/2 = 86.15% from indirect 

radiation.  

For the corresponding situation for direct sunlight, we need to know how much the power 

is reduced by having a flat panel. Since the angle 43.7° is optimum at month m, the 

direct radiation is at right angles to the PV plane at that month. In the diagram 

        S      R 

    sun’s rays 

 

 43.7°      Q 

 

      43.7° 

        T    P 

 

PQ is the panel. SQ is the vertical component of the sun’s rays which are travelling along 

RQ. If the panel were horizontal, it would occupy part of PT and the total radiation on the 

panel would be reduced from a factor of 1 to cos(γ1) = cos(43.7°). 

At month m we will compare the radiation on a horizontal panel with a panel at angle γ1 = 

43.7° to the horizontal. We will compare the indirect and direct radiation and their sum. 

For a horizontal panel the indirect radiation we have seen is boosted by a factor 1.11 

with respect to direct radiation, which has a vertical component cos(γ1). Their sum is 

therefore 

 1.11 + cos(γ1) = 1.11 + 0.72 = 1.83. 

For the panel at an angle γ1, the indirect radiation we have just seen is 1.11(1 + 

cos(γ1))/2, the direct radiation factor is 1, and their sum is 1.56 + [0.555  cos(γ1)] = 

1.96. It can be seen that the increased power at Brighton & Hove on adopting a panel at 

43.7° over a horizontal panel is not large. There is a 1% increase.  

To find the maximum power output at month m, consider a variation where the angle of 

the array is incremented from γ1 = 43.7° by an additional amount γ2. We will find the 

value of γ2 is negative. 
 

        R 

  A         S           

  B         E 

   C 

     D 

     γ2 

       T     Q 

         γ1  
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The adjusted panel is now at QA, and the original panel was at QB. Light rays hit QA along 

the old trajectory RE, and we want to find the vertical component to QA of this along SC. 

To do this we perform a similar calculation to the ones we have done previously to find 

that angle EDC is γ2. Relative to a length or power value of ED = 1, the value of CD is 

cos(γ2). The slope of the adjusted panel is γ1 + γ2 = 43.7° + γ2. 

To find the maximum power output we give a quick course in differential calculus using 

trigonometric functions like cos and sin. I am assuming the reader has done calculus 

before. 

The derivative, or slope, of a function f(x) = xn is  

 
df(x)

dx
 nxn-1. 

The exponential function is defined as a function whose derivative is given by the 

function itself. Its value is 

 ex = 1 + x + 
x2

2
+ 

x3

3 
+  , 

where the number n! (called n factorial) = n  (n – 1)  (n – 2)  ...  1. 

The Pythagoras theorem for a hypotenuse of length 1 can be stated as 

 (cos δ)2 + (sin δ)2  = 1, 

 

      δ      sin δ 

 

             cos δ 

which we write by an abuse of notation as 

 cos2 δ + sin2 δ  = 1. 

If we represent the imaginary number 

 i = √(-1), 

so 

 i2 = -1, 

then we see 

 cos δ = 
e-iδ + eiδ 

2
, 

 sin δ = i
e-iδ   eiδ 

2
 

satisfies the Pythagoras theorem for a hypotenuse of length 1. Expanded out these are 

    δ     
δ 

 
    

 sin δ = δ   
δ 

  
+   

It then follows from the definition of the exponential function that 

 eiδ =  cos δ + i sin δ. 

Thus 

 ei(A + B) = eiAeiB 

=  cos A + i sin A  cos B + i sin B  =  cos A+B + i sin A+B   
so that on comparing real and imaginary parts 

 cos A + B  = cos A cos B  sin A sin B, 

 sin A + B  = cos A sin B + sin A cos B. 
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A local maximum or minimum of a function occurs when the slope or derivative of a 

function is zero. 

  

  

  

 

 

From the definition of cos and sin in terms of the series above 

 
d sin δ

dδ
     δ, 

 
d cos δ

dδ
      δ. 

 

After this brief diversion, we now have the mathematical machinery to find the slope of 

the PV panel for the maximum panel power output. 

 

For the adjusted panel at an angle γ1 + γ2, at month m the indirect radiation we have just 

seen is  

1.11  (1 + cos(γ1 + γ2))/2, 

with γ1 = 43.7°, whereas the previous discussion has shown that for direct radiation the 

value is reduced to the corresponding level 

 cos(γ2). 

The sum of these two values is therefore 

 0.555 + (0.555  cos(γ1 + γ2)) + cos(γ2), 

and using the expression for cos(γ1 + γ2) = cos(43.7° + γ2), 

 cos(43.7° + γ2) = cos(43.7°) cos(γ2) – sin(43.7°) sin(γ2), 

or 

cos(43.7° + γ2) = 0.723 cos(γ2) – 0.691 sin(γ2), 

the sum is 

 0.556 + 1.401 cos(γ2) – 0.384 sin(γ2).  

 

To find the maximum or minimum of this, we have seen we take the derivative with 

respect to γ2 and equate it to zero. Thus  

 -1.401 sin(γ2) – 0.384 cos(γ2) = 0, 

or 

tan(γ2) = -0.384/1.401 = -0.274, 

γ2 = -15.3°, 

but this is a maximum, since if we take its derivative again, it is negative, which means 

the slope is decreasing as we pass through the maximum. Thus the slope of the panel 

should be 

 γ1 + γ2 = 28.4°. 

The number we generated for a horizontal panel was 1.83. Using a panel at 28.4° 

generates a number 0.556 + 0.488 + 0.965 = 2.01, thus the boost in this case is 

additionally 10% from the horizontal panel case. Note that the computations are for mid 

day. Outside of midday the effective slope is less. 
  

panel from horizontal 0° 28.4° 35° 43.7° 

computed boost 0% 10% 9% 1% 
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2.4.2. Non south facing panels. 

At what angle should a PV panel be if not completely south facing? 

Let us consider a panel at angle γ1 to the horizontal. 

        A 

 

     E 

        D           C 

 

              γ1 

        E    D         C 

       horizontal cross-section           vertical cross-section 

The height of the panel is ED, so 

 tan γ1 = ED/DC. 

If the panel is now turned by an angle δ, 

 

          C           E 

   A 

        D        F        γ′ 

           δ                  D    F 

 

 horizontal cross-section      vertical cross-section 

      about DF 

then in the diagram 

 DF cos δ = DC. 

If the angle to the horizontal taken through the vertical slice containing DF is γ′, then 

 tan γ′ = ED/DF = DC tan γ1 cos δ/DC = tan γ1 cos δ. 

Now if the sun’s rays are parallel to DF, if we are considering a non south facing panel to 

be sloped at angle γ1, we need at Brighton & Hove to specify that the adjusted value of 

the slope of the panel along DC is 

 γ1 = tan-1(tan γ′/cos δ) 

to maximise output. Thus the panel should be sloped more. 

 

2.5. Additional output. 

2.5.1. Reflector materials and coverings. 

We will assume the mirror film has properties similar to 3M™ Cool Mirror Film 330.  

We can compare this with other, cheaper alternatives. For example, we looked at turkey 

foil, which has a substantial paper backing. It has 90% reflectivity. The store B&Q supply 

mirrors. 

To protect against birds settling on the reflectors, it is possible to use Tedlar – a plastic 

foil that resists pigeons. An alternative is Mylar sheet, which is like polythene but very 

thick. Its transparency is 95%, but it is more expensive. 
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2.5.2. Reflector characteristics. 

A standard result we will use in the diagrams depicting light rays which follow is that the 

angle of incidence on a mirror equals the angle of reflection, ψ, shown below. 

   sun’s rays 

 

      mirror 

       ψ 

3M™ Cool Mirror Film 330 has an average reflectance at normal incidence of 89% or 

greater. This reflects light that is useful for PV modules and transmits infrared light. 

When used in low-x concentrated photovoltaic systems, it can be used to increase the 

amount of usable light on the module while limiting the amount of heat-generating 

infrared light on the module. At normal incidence angles, it has low visible reflectance, 

which limits blinding reflections. 

We will look at the effects of the reflector on temperature, and therefore efficiency, of the 

panel. We will also investigate the frequency of reflected solar radiation in terms of the 

characteristics of the panel. 
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2.5.3. The main reflector configuration. 

We will first look at the case of direct sunlight on a panel CD at an angle γ to the 

horizontal where a reflector is placed horizontally next to it. 

    C 

 

              μ 

 

 

     B           D            E 

   γ 

Suppose the sun’s rays are at angle μ to the horizontal. We have seen that the sun’s rays 

are at right angles to a panel at month m when the slope of the panel is 43.7°. This 

means the sun’s rays meet the horizontal at  

μ = 90° – 43.7° = 46.3°. 

For angle γ = 28.4°, this is less than μ, and so for these angles a computation gives the 

length DE of the flat reflector unphysically as negative! This means we might consider 

whether the following configuration is possible instead. 

   C 

 

 

    

           Q                        

  B   D            μ 

       γ              F  

 

   A           G     E         H 

          ε  μ 

The panel at CD is now elevated by a height BA = DG above the flat roof, and the reflector 

along DE touches the flat roof at E. The edge ray FE continuing to C is now at an angle 

CEG = μ + ε to the horizontal, and since angle μ = 46.3° and angle γ = 28.4°, so γ < μ, 

this is even worse than the horizontal case previously discussed. 

We are therefore led to consider the case when the reflector is at an angle to the 

horizontal shown below. 

          M             F 

   C 

                λ   G 

            E        H 

 

   B         J  

          γ       D      ε 

 

The panel CD now adjoins the reflector along DE (or there is a space, for rainwater). The 

panel angle to the horizontal is γ, the reflector angle is ε, EH is a horizontal line and the 

light ray FE meeting the reflector at E makes an angle of λ with the continuation of DE to 

DG. Thus 

 angle EDJ = ε = angle GEH, 
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so since 

 angle FEG = λ = angle GEH, 

we have the angle of the light ray to the horizontal 

 angle FEH = μ = λ + ε. 

If E is the extremity of the reflector, and a light ray FE is reflected to the end of the panel 

at C, since DCE is a triangle whose angles sum to 180°, 

 angle DCE + angle CED + angle EDC = 180°, 

 angle DCE + λ + (180° – γ – ε) = 180°, 

so 
 angle DCE = γ + ε – λ. 

We are recommending that to allow rainwater to escape, the panel CD should be 

elevated to a height BA. Then 

 C 

         G 

 

 

 B       D 

            γ     ε 
 A 

    K 

an imaginary continuation of CD meets the floor at K and the reflector is now along KG. 

We now use the sine rule, whose proof we first provide. Let TUV be the triangle shown 

below 

         U    ψ1 

      

    W 

 

 

         T          V 

              ψ2 

We have 

 sin ψ1 = TW/TU, 

 sin ψ2 = TW/TV, 

so 

 TW = TU sin ψ1 = TV sin ψ2, 

giving 

 sin ψ1/TV = sin ψ2/TU. 

Consequently 

 sin (angle DCE)/DE = sin(angle CED)/CD. 

Hence 

 DE = CD sin (γ + ε – λ)/sin λ. 

If γ = 30°, say, where μ = 45.3° = ε + λ, then 

 DE = CD sin(30° + 2ε – 46.3°)/sin(46.3° – ε). 

Thus a necessary requirement for DE to be positive is that 

 2ε > 16.3° 

so 
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 46.3° > ε > 8.7°, 

where ε is the slope of the reflector.  

For instance, if we chose ε = 30° then 

 DE = CD sin 43.7°/sin 16.3° = 2.143 CD. 

However, we have seen at the winter solstice that μ = λ + ε = 15.8°. If we do not want to 

block out the sun’s rays from the panel at any time of year, then at a minimum value of λ, 

λ = 0, we must have ε at most as, say, 15°. If we assume this value is the optimum, then 

we can calculate DE in terms of CD 

 DE = CD sin 43.7°/sin 16.3° = 2.5 CD. 

It is advised that the value of the length of the reflector be larger than this, so that for 

smaller values of μ (winter!), the reflector continues to beam over the entire panel. Also 

panels in a rank in front of the panel should not obstruct the view of the reflector. 

We have seen that angle FEH is 

 ε + λ = μ = 46.3° 

so that with ε = 15° 

 λ = 21.3°. 

Also we showed the angle of the reflected light ray to the panel is 

 angle DCE = γ + ε – λ = 30° + 15° – 21.3° = 23.7°, 

so the component of reflected sunlight at right angles to the panel is 

 sin(23.7°) = 0.40. 

As a second consideration, we will investigate what happens under indirect illumination, 

where we will consider the radiation for the above ε, which now must be the case. Since 

we have seen that μ = ε + λ = 15° + λ, say, which means indirect radiation varies from 0° 

to λ = μ – ε = 30.3°, its proportion of the sky is 30.3/180 = 0.168, or 16.8%.  

Relative to the component of direct sunlight at 1, the component of indirect light is 1.11. 

Thus at the date m = 18th April, the total percentage increase in using reflectors taking 

account of both direct and indirect illumination is 

100  [1  0.402 + 1.11  0.168]/[1 + 1.11] = 29%. 

 

2.5.4. Illuminating the panel from above. 

We will look at a reflector suitable for a back array of arrays in ranks, so that there is no 

shadow from the reflector for arrays in other ranks, as would be arranged from the 

diagram 

    F     A 

       φ        E                     G         

             H 

           C  I       μ 

     J 

 

           B       D  
 

   γ 
We note that in this configuration, part of the indirect illumination on the panel is blocked 

off, so we will need to compute this. 
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The panel is along CD at angle γ to the horizontal, the reflector along CF is at angle φ to 

the horizontal, and the sun’s rays, striking the reflector at E are at an angle μ to the 

horizontal. 

Now 

 angle ICJ = angle DBC = γ 

 angle ECI = φ 

so 

 angle ECJ = angle ECI + angle ICJ = φ + γ, 

whereas 

 angle FEG = angle ECI = φ, 

so 

 angle AEF = angle FEG – angle AEG = φ – μ. 

What is angle EJC, the angle at which the reflected light ray hits the panel CD? From the 

property of the interior angles of a triangle 

 angle EJC + angle JCE + angle CEJ = 180°, 

where we have seen 

 angle JCE = φ + γ, 

 angle CEJ = angle FEA = φ – μ. 

Thus 

 angle EJC = 180° – φ – γ – φ + μ 

      = 180° – 2φ – γ + μ. 

For the length of the corresponding lines, if CJ is extended to CD as in the diagram below 
 

         E 

 

 

 

 

           C 

 

 

 

            B         J = D 

 angle CEJ = φ – μ, 

angle EJC = 180° – 2φ – γ + μ, 

and by the sine rule 

 [sin(angle CEJ)]/CJ = [sin(angle CJE)]/CE, 

so CE, the length of the reflector to cover the whole of the panel CJ = CD, is 

 CE = CD[sin(180° – 2φ – γ + μ]/sin(φ – μ), 

and since for an arbitrary angle ψ given in the symmetrical diagram below 

 

 

          ψ 

 

 

  -1         0          +1 

 sin ψ = sin (180° – ψ), 
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we have the length of the reflector 

CE = CD[sin(2φ + γ – μ]/sin(φ – μ). 

For example, if CE = CD, then 

180° – 2φ – γ + μ = φ – μ, 

3φ = 180° – γ + 2μ, 

or 

φ = 60° + (2μ – γ)/3. 

At the mid month m = 18th April we are taking μ = 46.3°, so this gives the slope of the 

reflector 

 φ = 81°. 

We recommend φ = 82° and extending CE to 2.3 CD, so that the panel continues to be 

covered by reflected sunlight in summer. For reasons given at the end of this section, it is 

not desirable that CE be too large, which is why we have increased φ by 1°. Under the 

conditions of the summer solstice we now have 

 CE = CD sin(180° – 164° – 30° + 62.6°)/sin(82° – 62.6°) 

       = CD sin(46.8°)/sin(19.4°) = 2.26 CD. 

The direct component of solar radiation for φ = 81° is now at right angles to the panel by 

the amount 

 sin(angle EJC) = sin(180° – 2φ – γ + μ) = sin(18° – 30° + 46.3°) 

    = sin(34.3°) = 0.564. 

The indirect component varies over 

 angle FEG = φ = 81°, 

where the total component for unreflected indirect radiation is 180°.  

However, for indirect illumination we are also cutting off 180° – φ of the angle at C. This 

means that with the reflector in this position, the indirect radiation covers 

 φ – (180° – φ) = 2φ – 180° = -18°, 

so the reduction of indirect illumination is 18/180 = 0.1. 

Thus if we sum the direct components for the reflector at 15° with this top reflector, 

together with the positive and negative indirect components, we get an increase of 

 100  [1  (0.402 + 0.592) + 1.11  (0.168 – 0.111)]/[1 + 1.11] 

  = 100  [0.994 + 0.075]/2.11 = 100  1.069/2.11 

  = 50.7%. 

We must bear in mind that the top reflector panels are not available in this configuration 

to ranks of panels in front of them. 

 

Particles of dust degrade the performance of solar panels. Normal rainwater will wash 

the panel and thus maintain its effectiveness. The configuration we are discussing will 

shield part of the panel from rainwater in some circumstances. 

Further, the high exposure of the reflector to wind makes it necessary to secure it firmly 

(no part of the structure to do this should cast a shadow on the panel). There could be a 

destructive failure of the support structure for the reflector during a gale. It is not 

recommended that this option is tried unless the structure is stable in a gale, or a 

movable reflector angle is made to offer minimal wind resistance in such a circumstance. 
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2.5.5. Illuminating the panel from below. 

Why do a calculation on the configuration of panels illuminated from below? The 

underside of the panel can be illuminated perfectly at midday, but at other times a 

shadow would be cast due to the struts holding up the panel. This means no additional 

output would be produced for the time the underside contained partial shadow. However, 

it is possible to extend the width of the structure on which the panel rests, so its edges 

meet the floor some distance away from the panel, and this would increase the 

acceptability of this method summed over a longer period of the day. 
 

 

          λ          H 

           G            I 

        J 

         

        F      C 

 

    E 

    K    A    B          D 

           ε 
If in the diagram above CD is the panel and EG the reflector, at the winter solstice, a light 

ray along CA will meet the horizontal AB at an angle ε. At the summer solstice, a light ray 

HG if at angle λ to the horizontal hits the panel after reflection at C. 

This arrangement is inconsistent if angle GKA < 90°, because λ = 62.6°, so 

 2λ > angle HGK = 2λ + angle IGJ. 

Thus if angle GKA < 90°, we must exclude the illumination for part of the year. There are 

two extremes we might wish to chose: exclude illumination for a period around the 

summer solstice, or exclude illumination around the winter solstice. However, we have 

just seen that there can be no illumination below the panel at the summer solstice if 

angle GKA < 90°.  

So let us look at the case angle GKA > 90° above, corresponding to angle LAD below. 

 

          M    N    P 

              Q 

     φ 
     L       R        λ        E 

            ψ            C         

               F 

                γ 
 

      K      A       D 

          λ 

Let the panel be along CD with slope γ. At the winter solstice a light ray at angle λ = 15.8° 

goes from C on the panel to K on the flat roof. KN is at right angles to KD. The reflector is 

aligned along AM at angle ψ to the vertical. KN meets AM at L. QL is at right angles to AL. 

In general a light ray hits the reflector along PL and meets the base of the panel at D. 

 angle PLQ = φ = angle QLD. 
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Angle NLR is a right angle. At the winter solstice 

 angle PLR = λ, 

so 

 angle PLD = 2φ = angle RLD + angle PLR, 

giving 

 angle RLD = 2φ – λ. 

 

We will fix this value of L as the bottom edge of the reflector. For higher values of λ up to 

μ = 46.3° at the summer solstice, the reflection will be higher up along the reflector at 

LM. 
 

 

2.5.6. Possibly warranty compliant solutions. 

The warranty for a PV panel will specify that the conditions under which it operates must 

not exceed its design characteristics. However, it may be possible to assume that if the 

panel operates under conditions equivalent to those at the equator, then it does not 

exceed its warranty requirements. Alternatively, if the PV panel is designed for a certain 

minimum latitude on the Earth’s surface, then under either of these conditions, it might 

be possible to boost the irradiance of the panel to just below its stipulated maximum, 

without infringing warranty requirements. 

If this condition holds on the warranty, then we can calculate the maximum boost from a 

reflector to a solar panel which maintains it within the design characteristics for normal 

operation. Thus it may be of interest to calculate the relative irradiance at the equator 

and that for the latitude at which the panel is situated. 

Say at the equator the incident solar radiation has value 1, and its direct and scattered 

plus cloud components are in the same ratio as considered previously. Then at the 

summer solstice for Brighton and Hove at D 
 

 sun’s rays      A 

 

       E 

     H    D        F 

 

 G 

 

            62.6°      B 

 

 angle HDG = 62.6°, 

so this means the vertical component of the sun’s rays at D are  

sin(62.6°) = 0.8878 

so we can boost output and stay within the warranty at that time by at least 

100   (1 – 0.888) = 11.2%. 

 

2.5.7. Maximum output. 

 

2.5.8. Characteristics for increasing output by percentages. 
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2.6. Comparing theory with practice. 

 

2.6.1. Review of other information. 

 

2.6.2. The practice of PV reflectors on flat roofs. 

 

2.6.3. Testing. 

 

2.7. Health and safety. 

2.7.1. Procedures. 

Because of the possibility of blinding sunlight from reflectors, people entering the roof 

area should wear sunglasses which are not free to fall, or goggles. A danger warning for 

access to the roof should be prominently displayed, and where to get sunglasses on the 

premises.  

In case of a person not following these instructions, not able to follow them and 

irrespective of this, training should be provided for emergency procedures when 

someone is not able to see on the roof, and these procedures should also be prominently 

displayed. For instance, it could be stated that in the case of blinding reflected sunlight, 

the person should shut their eyes and cover them with their hands, turn away from the 

reflection if where it is coming from is known, wait for a minute, and then with fingers 

moved to see partly, proceed to the exit.  

No solar reflectors should be installed where their reflection is visible from the ground or 

where adjacent buildings may be subject to blinding reflections visible from these 

buildings at any time of day. 

 

2.7.2. The response of the eye to illumination. 

 

2.7.3. The effect of reflectors on birds. 

 

2.8. Costs.  
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